[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index][Subject Index][Author Index]

[dinosaur] Birds: Flightless to flight-capable transitions + cranial kinesis + enantiornithine growth




Ben Creisler
bcreisler@gmail.com

Some recent avian items:


Free pdf:

Ashley M. Heers, Stephanie L. Varghese, Leila K. Hatier and Jeremiah J. Cabrera (2021)
Multiple Functional Solutions During Flightless to Flight-Capable Transitions.
Frontiers in Ecology and Evolution 8:573411
doi: https://doi.org/10.3389/fevo.2020.573411
https://www.frontiersin.org/articles/10.3389/fevo.2020.573411/full



The evolution of avian flight is one of the great transformations in vertebrate history, marked by striking anatomical changes that presumably help meet the demands of aerial locomotion. These changes did not occur simultaneously, and are challenging to decipher. Although extinct theropods are most often compared to adult birds, studies show that developing birds can uniquely address certain challenges and provide powerful insights into the evolution of avian flight: unlike adults, immature birds have rudimentary, somewhat "dinosaur-like" flight apparatuses and can reveal relationships between form, function, performance, and behavior during flightless to flight-capable transitions. Here, we focus on the musculoskeletal apparatus and use CT scans coupled with a three-dimensional musculoskeletal modeling approach to analyze how ontogenetic changes in skeletal anatomy influence muscle size, leverage, orientation, and corresponding function during the development of flight in a precocial ground bird (Alectoris chukar). Our results demonstrate that immature and adult birds use different functional solutions to execute similar locomotor behaviors: in spite of dramatic changes in skeletal morphology, muscle paths and subsequent functions are largely maintained through ontogeny, because shifts in one bone are offset by changes in others. These findings help provide a viable mechanism for how extinct winged theropods with rudimentary pectoral skeletons might have achieved bird-like behaviors before acquiring fully bird-like anatomies. These findings also emphasize the importance of a holistic, whole-body perspective, and the need for extant validation of extinct behaviors and performance. As empirical studies on locomotor ontogeny accumulate, it is becoming apparent that traditional, isolated interpretations of skeletal anatomy mask the reality that integrated whole systems function in frequently unexpected yet effective ways. Collaborative and integrative efforts that address this challenge will surely strengthen our exploration of life and its evolutionary history.


===

Free pdf:

Olivia Plateau & Christian Foth (2021)
The impact of allometry on vomer shape and its implications for the taxonomy and cranial kinesis of crown-group birds.
bioRxiv 2020.07.02.184101 (preprint)
doi: https://doi.org/10.1101/2020.07.02.184101
https://www.biorxiv.org/content/10.1101/2020.07.02.184101v2

Free pdf:

https://www.biorxiv.org/content/10.1101/2020.07.02.184101v2.full.pdf


Crown birds are subdivided into two main groups, Palaeognathae and Neognathae, that can be distinguished, among other means, by the organization of the bones in their pterygoid-palatine complex (PPC). Shape variation of the vomer, which is the most anterior part of the PPC, was recently analysed with help of geometric morphometrics to discover morphological differences between palaeognath and neognath birds. Based on this study, the vomer was identified as sufficient to distinguish the two main groups (and even some inclusive neognath groups) and their cranial kinetic system. As there are notable size differences between the skulls of Palaeognathae and Neognathae, we here investigate the impact of allometry on vomeral shape and its implication for taxonomic classification by re-analysing the data of the previous study. Different types of multivariate statistical analyses reveal that taxonomic identification based on vomeral shape is strongly impaired by allometry, as the error of correct identification is high when shape data is corrected for size. This finding is evidenced by a great overlap between palaeognath and neognath subclades in morphospace. Correct taxonomic identification is further impeded by the convergent presence of a flattened vomeral morphotype in multiple neognath subclades. As the evolution of cranial kinesis has been linked to vomeral shape in the original study, the correlation between shape and size of the vomer across different bird groups found in the present study questions this conclusion. In fact, cranial kinesis in crown birds results from the loss of the jugal-postorbital bar in the temporal region and ectopterygoid in the PPC and the combination of a mobilized quadrate-zygomatic arch complex and a flexible PPC. Therefore, we can conclude that vomer shape itself is not a suitable proxy for exploring the evolution of cranial kinesis in crown birds and their ancestors. In contrast, the evolution of cranial kinesis needs to be viewed in context of the braincase, quadrate-zygomatic arch and the whole pterygoid-palatine complex.


====


Also, only an abstract for now:

Jessie Atterholt, ÂAshley W. Poust, Gregory M. Erickson and ÂJingmai K. O'Connor (2021)
Intraskeletal osteohistovariability reveals complex growth strategies in a Late Cretaceous enantiornithine.
Frontiers in Earth Science (abstract only)
doi: 10.3389/feart.2021.640220
https://www.frontiersin.org/articles/10.3389/feart.2021.640220/abstract



Most crown-birds experience rapid growth, reaching adult size within a year. Rapid growth strategies evolved within Aves multiple times during the Cretaceous, documented in the Confuciusornithiformes and the Ornithuromorpha. In contrast, osteohistological data suggest the Enantiornithes, the dominant clade of Cretaceous terrestrial birds, were characterized by much slower growth rates that were sustained longer into adulthood. Here we provide evidence for a unique growth strategy involving relatively rapid growth in the Late Cretaceous avisaurid enantiornithine, Mirarce eatoni. Multiple appendicular skeletal elements were sectioned for osteohistological analysis. These show remarkable intraskeletal variation, and high levels of variation even between individual sections. The radius is composed of parallel-fibered bone, similar to histological descriptions in other enantiornithines. Other elements, in contrast, differ markedly from other members of the clade. The humerus is composed of parallel-fibered bone with a middle layer of incipient fibrolamellar bone and several growth lines in the outer circumferential layer and near the endosteal border. The endosteal and periosteal layers of slow-growing bone indicate cyclical variation in growth rates. The femur shows regions of coarse compact cancellous bone and parallel-fibered bone with numerous secondary osteons, and only a single growth line. The tarsometatarsus is predominantly fibrolamellar in texture, with several asymmetrical growth lines located throughout the cortex; this element exhibits strong cortical drift. Growth lines in both the endosteal and periosteal portions of the cortex indicate that, like the humerus, growth rates of this bone varied cyclically. The two phalanges studied here are composed of parallel-fibered bone with extensive evidence of and remodeling over possible regions of coarse compact cancellous bone. Although Mirarce is one of the largest known enantiornithines, slow and protracted growth documented in similarly-sized taxa suggests this bone texture is not merely a size-related scaling effect. These findings indicate that by the Late Cretaceous, some enantiornithines had evolved absolutely higher growth rates and more complex life history strategies, in which growth rates varied across the skeleton. Furthermore, a variety of strategies were employed to achieve adult size and morphology, including cycles of slow and fast growth, asymmetrical growth within a single element, and extensive remodeling.




Virus-free. www.avg.com