Ben Creisler
New Cenozoic bird papers:
====
The stem lineage relationships and early phenotypic evolution of Charadriiformes (shorebirds) and Gruiformes (rails, cranes, and allies) remain unresolved. It is still debated whether these clades are sister-taxa. New phylogenetic analyses incorporating Paleogene fossils have the potential to reveal the evolutionary connections of these two speciose and evolutionarily critical neoavian subclades. Although Gruiformes have a rich Paleogene fossil record, most of these fossils have not been robustly placed. The Paleogene fossil record of Charadriiformes is scarce and largely consists of fragmentary single elements. Only one proposed Eocene charadriiform-like taxon, Scandiavis mikkelseni of Denmark, is represented by a partial skeleton. Here, we describe a new species from the early Eocene Green River Formation of North America comprising a partial skeleton and feather remains. Because the skeleton lacks the pectoral girdle and forelimbs as in S. mikkelseni, only features of the skull, axial skeleton, and hind limb are available to resolve the phylogenetic placement of this taxon. These anatomical subregions initially showed features seen in Charadriiformes and Gruiformes. To assess placement of this taxon, we use a matrix consisting of 693 morphological characters and 60 taxa, including S. mikkelseni and the oldest known charadriiform taxa represented by single elements. These more fragmentary records comprise two distal humeri from the earliest Eocene Naranbulag Formation of Mongolia and the early Eocene Nanjemoy Formation of Virginia. Our phylogenetic analyses recover the new taxon and S. mikkelseni alternatively as a charadriiform or as a stem-gruiform; placement is contingent upon enforced relationships for major neoavian subclades recovered by recent molecular-based phylogenies. Specifically, when constraint trees based on results that do not recover Charadriiformes and Gruiformes as sister-taxa are used, the new taxon and S. mikkelseni are recovered within stem Gruiformes. Both Paleogene fossil humeri are consistently recovered within crown Charadriiformes. If placement of these humeri or the new taxon as charadriiforms are correct, this may indicate that recent divergence time analyses have underestimated the crown age of another major crown avian subclade; however, more complete sampling of these taxa is necessary, especially of more complete specimens with pectoral elements.
======
Free pdf:
While pelagornithid or 'bony-toothed' bird fossils representing multiple species are known from Antarctica, a new dentary fragment of a pelagornithid bird from the middle Eocene Submeseta Formation on Seymour Island, Antarctica represents a species with a body size on par with the largest known species in the clade. Measurements from the partial 'toothed' dentary point to a giant body size for the species, although the spacing among the pseudoteeth differs from that published for other pelagornithids. The discrepancy might suggest that previous techniques are not adequate for examination of incomplete material or that another factor such as phylogeny might impact size estimates and comparisons. Combined with a revised stratigraphic position in the early Eocene La Meseta Formation on Seymour Island for the largest pelagornithid tarsometatarsus known, these Antarctic fossils demonstrate the early evolution of giant body size in the clade (byâ~â50 Ma), and they likely represent not only the largest flying birds of the Eocene but also some of the largest volant birds that ever lived (with an estimated 5â6 m wingspan). Furthermore, the distribution of giant-sized pelagornithid fossils across more than 10 million years of Antarctic geological deposits points to a prolonged survival of giant-sized pelagornithids within the southern seas, and their success as a pelagic predatory component of marine and coastal ecosystems alongside early penguins.
=============ÂÂ