[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index][Subject Index][Author Index]

Re: Fw: Dinosaurs and birds



Here we go again . Are you now trying to cast me as arguing that hind limbs are 
NOT limiting? Obviously they are, w/ out any question, in any terrestrial 
animal, and I have never stated or implied otherwise. Yet here I am, morphing 
into a moron who thinks that stride "oscillation and length" increase into 
infinity....

You contend that velocity at the hind limb fail point minus velocity at max 
running speed = zero, which strikes me as an overly dramatic and non-sensical 
statement, on both on the dreaded "intuitive" and the more esteemed 
non-intuitive levels. Safety factors are built into every aspect of locomotion, 
for one thing. There is a downhill grade such that a sprinter's maximum speed 
is greater than on flat ground, for another. My guess would be about 5%...

Marjanovich says it is "close", like he is rebutting my argument. You quote 
him, like he is supporting your argument....

I say and have said that velocity at the hind limb fail point minus velocity at 
max running speed is not zero, even in _large bipeds_ like humans, and that 
"close" may convey advantage.  Sheesh. --Don


----- Original Message ----
From: Michael Habib <mhabib5@jhmi.edu>
To: dinosaur@usc.edu
Sent: Sunday, April 15, 2007 12:12:55 PM
Subject: Re: Fw: Dinosaurs and birds

> 1). Huh? Can you clarify? Because the statement above sounds like good 
> old-fashioned double-talk, in the context of my "good argument".

I thought you made the argument well, and the result you described 
seems intuitive.  However, like many issues in locomotion (or mechanics 
in general), the limits in this case are not particularly intuitive. 
--MH

============================
------------ Ahh, indeed. "Intuitive". 
==============================

> Mike claims this is physically impossible, even for humans equipped 
> with high-tech rocket packs, due to something called the "limiting 
> hindlimb mechanic". To quote; "The
> animal can point the thrust in any direction it wants, and apply it in 
> any series of pulses or continuous push that it wishes.  If the hind 
> limbs are the limiting factor in velocity, then aerodynamic thrust 
> still does not speed them up...." --MH.
>
> "If", indeed. Surely you did not mean to posit your conclusion as a 
> pre-condition to your argument.

Of course not, and I don't think I did so.  My conclusion is that the 
animal does not gain maximum running speed by flapping the forelimbs.  
The pre-condition is that the hind limbs are already at maximum 
capacity.  If the hind limbs are not actually limiting, then perhaps 
the animal can run faster.  However, I find it hard to see how this 
would be the case.  It seems unlikely based on four factors:

1) The mechanics, when calculated, suggest a hind limb limitation.  
Animals cannot exceed physical laws, even with the wide variety of 
possible body plans and lifestyles, so the mechanics suggest pretty 
firm limits.


2) Running birds do not flap continuously while cruising at high speed. 
  I know you consider adult birds to be a poor model, but many of them 
are cursorial, and they should be using the wings to increase sustained 
running speed if that were possible.  Roadrunners, secretary birds, and 
seriemas should all flap continuously while chasing prey if that 
dynamic adds top speed.  All three of those species flap while running 
in some cases, but it's usually during fast starts turns, and climbs.  
I have yet to see any running bird sustain a sprint and flap 
continuously while doing so.

===============================================
Who said anything about "cruising"? MAXIMUM SPEED is what my comments apply to, 
have applied to, and will CONTINUE TO APPLY TO. What terrestrial animal 
maintains maximum speed for more than a few seconds?

Further, why "should" they "flap continuously"? That is an assumption on your 
part. Prey speed, and energetics are 2 reasons it is probably unjustified, even 
if the following statements weren't true. 1). When volants maximize output they 
FLY, Mike. They can't help it. The non-birds that populate the ground-up 
scenario have a top gear, but can't fly yet. 2). It's a completely different 
evolutionary path and dynamic, especially from the perspective of the 
competitive cohort, and beginning anatomy. This applies to your comment 3, 
below, including the neo-flightless. --Don
================================================

3) To the best of my knowledge, neither neoflightless cursorial birds 
nor precocial offspring of volant species flap continuously while 
sprinting.  Personal observations, along with literature images and 
videos, suggest to me that they do flap in a hard pulse while fast 
starting or maneuvering tightly.  If forelimbs increased maximum speed, 
we would expect the forelimbs of neoflightless birds to be nearly as 
strong as those of volant cursors (since they would be producing large 
amounts of aerodynamic power with the forelimb system).

4) Personal experimentation: tying yourself to a car or running 
downhill does not add top speed, it just creates unbalance.

===========================
Oh-ho! so you finally tried it? About time...--Don       }:D
===========================
--MH

>  In any case, the hind limbs are NOT the limiting factor, at the rate 
> of forward motion that can be achieved by running; THRUST is the 
> limiting factor.
> This conclusion requires only 2 assumptions; 1) the stresses on the 
> leg are less at the front of the stride cycle than at back, and 2) it 
> is possible for the hind limbs to increase cycle frequency when not 
> generating the primary thrust necessary to maintain forward motion. 
> Both assumptions appear to me to be manifestly true.

Can you demonstrate that the hind limbs are not limiting?  If total 
thrust alone is the limiting factor, that means that hind limbs are not 
limiting in their oscillation rate or length, which seems unlikely.  
Incidentally, I would imagine that the stresses on the leg are not 
lower on the front of the stride cycle than the back except on the 
first stride.  --MH

===================
Did you notice the phrase "at the rate of forward motion that can be achieved 
by running." ?

Stresses equal... Interesting idea. In total, probably, is my uneducated guess. 
Not so power mass, which controls speed, does it not? Back stride: 
action/reaction. Front stride: rotation at hip...

Hind limbs definitely limiting, at some point. I say-- velocity at the hind 
limb fail point minus velocity at max running speed is not zero. --Don
==============================

> The maximum speed a biped can generate through unassisted use of the 
> hind limbs does NOT constitute some magical theoretical barrier that 
> cannot be exceeded.

It's not magical, it's just a mechanical barrier.  As David M. said: 
"I'd bet money it's very close to that barrier, which is not magic at 
all but depends on length and mass of the hindlimbs in total and the 
arrangement and size of the muscles that move them."

================================================
Hell, man, you don't say "close." You say ZERO. Marjanovich isn't on your side 
in this, although I take it he wants to be...
-==============================================

We also need to keep the footfall time in mind: if our near-bird 
increases its travel speed during aerial phase with the forelimbs, then 
it will be going beyond the velocity sustainable by the hind limbs when 
it makes footfall at the end of that aerial phase. 

 ==========================================
You say "beyond velocity sustainable." ??? That is the _question_. Again! Wow, 
man.
===========================================

The critter is 
going to fall over at that point unless it can speed its footfall rate 
to keep up (essentially skipping), but that requires lowering the duty 
factor.  If the hind limb power is constant, but the duty factor 
decreases, then the total force imparted on the substrate will 
decrease. --MH

> =======================================
> 2). Total power relative to forward motion is not coming from the hind 
> limbs in this situation, yet evidently there is a term in your 
> equation  that "...requires higher hind limb power (that we've already 
> limited)". [???] Why is that? In fact, relative to the theoretical 
> situation as posited, NO forward thrust is required from the hind 
> limbs... nor is any aerodynamic lift required, as the legs serve to 
> counteract gravity. Note, that can be done mechanically, w/out thrust 
> generation other than that required to pull a given leg forward into 
> the front of the stride cycle...
> =======================================

The term requires higher hind limb power because force imparted and 
limb oscillation speed both depend on total power.  If power is 
limiting, then both of those variables have an upper limit irrespective 
of assistance from forelimbs. --MH

> Not quite what I meant.  If the animal is supporting its full weight
> with lift, and doing so by overcoming drag with thrust (from the
> wings), then it is flying.
>
> ============================================
> 3). Flight requires a flight-control phenotype. Simple thresholds of 
> lift and thrust production do NOT mean FLIGHT-CAPABILITY in any 
> relevant ecological or evolutionary sense. And lift is not relevant to 
> my argument.
> ============================================

Thresholds of lift and thrust are paramount to flight capability: they 
define the ability to fly.  As such, thresholds of lift and thrust are 
of great importance in an ecological or evolutionary sense.  Of course, 
a number of adaptations are required to meet the prerequisite lift and 
thrust needs.  I'm not sure what you mean by a "flight-control 
phenotype".  Do you simply mean that flying animals must be able to 
control their flight path?  --MH

> Positive lift is counter-productive for running speed.
>
> ======================================
> 3). Thrust. NOT lift.  Not necessarily counter-productive.
> ======================================

Well, the thrust problem is the same problem as before: exceeding hind 
limb capacity and crashing.  However, I am also curious as to what 
dynamic you are proposing to produce only thrust from the forelimb.  
Part of the resultant force will be perpendicular to the flow, and 
result in lift.  It could be minimized by pushing largely with the 
outboard wing, but avian wings generally produce both thrust and lift 
(which are really two vectors of the same fluid force in flapping 
flight).  --MH

> ============================================
> 4). _If_ my understanding of the hypothesis is correct, WAIR, when 
> advanced as a _primary_ flight evolution scenario, overemphasizes foot 
> traction by oversimplifying lifestyle, substrate issues, and traction 
> enhancing devices, and in so doing discounts the numerous advantages 
> attainable in a vast number of situations in which those simplifying 
> assumptions do not hold, yet forelimb assistance can be postulated. 
> This may be a result of WAIR's use of extant animals w/ a specific 
> life style as models, or natural academic competitiveness.

WAIR has some problems, but oversimplification of lifestyle, substrate, 
and traction are not really major faltering points.  The WAIR mechanic 
was studied with live birds on natural substrates (ie. branches), so 
those factors are actually all included.  WAIR in and of itself also 
does not exclude or reject other uses of the forelimbs, but, like you 
said, the authors of the WAIR description emphasize its importance over 
other dynamics (and probably take that emphasis a bit far).  In any 
case, WAIR as a primary flight evolution scenario misses many other 
important dynamics, just as you pointed out, and also suffers from 
certain mechanical shortcomings (ie. the mechanics of WAIR might not 
have been available to basal birds). --MH

> Sure, I can expand.  Sorry for shifting the subject a bit last time and
> causing confusion.  If the normal force on the foot is reduced by
> producing positive lift, then the foot will both 1) experience lowered
> friction, and 2) impart reduced force against the ground.  Not a
> particularly useful tool for running rapidly.
>
> ===============================================
> 5). That depends on environment, lifestyle and bodyplan. Not a 
> universal law. Reduced foot force against the ground can highly 
> advantageous to many exploits, _especially when it is discretionary_.
> ===============================================

It's not a law, but it is a result of laws (physical ones), and thus is 
going to be a pretty firm rule most of the time.  Reduced foot force 
against the ground can be advantageous, but not for running speed.  --MH

==============================================
Depends on substrate. Further, sun rises in east. 

If you are standing on the surface of the Earth, not too far north or south of 
equator. There is a limit there, ya know.

Damn, almost left an opening there. Phew! 

I'm outta here. Until at least Wednesday. More likely Friday. Be careful what 
you evolve into. --Don
===============================

Cheers,

--Mike H.